Research laboratory safety

cover image

Where to find it

Davis Library (8th floor)

Call Number
Q183.A1 K84 2016
Status
Available

Authors, etc.

Names:

Summary

Research Laboratory Safety explains the most important prerequisite when working in a laboratory: Knowing the potential hazards of equipment and the chemical materials to be employed. Students learn how to assess and control risks in a research laboratory and to identify a possible danger. An approach on the hazard classes such as physical, chemical, biological and radiation hazards is given and exercises to each class prepare for exams.

Contents

  • Part I Introductory Material
  • 1 Introduction p. 3
  • 1.1 Accidents in the research laboratory p. 3
  • 1.1.1 Vladimir Likhonos: eating explosives p. 3
  • 1.1.2 Karen Wetterhahn: a deadly droplet p. 4
  • 1.1.3 Michele Dufault: hair is a hazard p. 4
  • 1.1.4 Louis Slotin: A slipped screwdriver p. 6
  • 1.1.5 Preston Brown: Ignoring safety protocols p. 7
  • 1.1.6 Sheri Sangji: a spontaneous fire p. 9
  • 1.2 Factors contributing to laboratory accidents p. 9
  • 1.2.1 Reason's Swiss cheese model p. 9
  • 1.2.2 Accident "causes" p. 11
  • 1.2.3 Unsafe conditions versus unsafe behavior p. 11
  • 1.3 Hazards in the laboratory p. 13
  • 1.3.1 Types of hazards p. 13
  • 1.3.2 Main risks in laboratories p. 14
  • 2 Ethical responsibilities p. 15
  • 2.1 Who requires protection? p. 15
  • 2.2 Ethical responsibility to others in the lab p. 16
  • 2.3 Penalties for ethical violations p. 18
  • 3 Assessing and controlling risk p. 20
  • 3.1 Distinguishing hazard from risk p. 20
  • 3.2 Simple methods for estimating risk p. 20
  • 3.3 A semiquantitative method for risk estimation in the laboratory p. 22
  • 3.4 Risk assessment exercises p. 25
  • 4 Hazard and risk controls p. 26
  • 4.1 The hazard control process p. 26
  • 4.1.1 Hazard identification p. 26
  • 4.1.2 Risk screening p. 27
  • 4.1.3 Hazard analysis p. 28
  • 4.1.4 Hazard control p. 28
  • 4.2 Classifying hazard controls p. 29
  • 4.2.1 Functional classification of hazard controls p. 29
  • 4.2.2 Traditional hierarchy of controls p. 30
  • 4.2.3 Creativity in hazard control p. 31
  • 4.3 Exercises: Hazard control p. 31
  • Part II Hazard classes and control methods
  • 5 Hazard identification methods p. 35
  • 5.1 Brainstorming, mind-mapping, and other creative methods p. 35
  • 5.2 Checklists p. 36
  • 5.3 Reference books p. 36
  • 5.4 Regulations and standards p. 37
  • 5.5 Real-life hazard identification p. 38
  • 5.6 Exercises: Hazard identification p. 39
  • 6 Physical hazards p. 40
  • 6.1 Mechanical hazards p. 40
  • 6.1.1 Pinch points p. 40
  • 6.1.2 Guards and interlocks for mechanical hazards p. 40
  • 6.1.3 Shear points p. 42
  • 6.1.4 Run-in points p. 43
  • 6.1.5 Wrap points p. 45
  • 6.1.6 Clobbering p. 47
  • 6.2 Sharps p. 48
  • 6.2.1 What is a sharp? p. 49
  • 6.2.2 Sharps handling p. 49
  • 6.2.3 Sharps disposal p. 50
  • 6.3 Heat p. 52
  • 6.3.1 Common laboratory sources of heat p. 52
  • 6.3.2 Heat-protective apparel p. 53
  • 6.3.3 Using torches, burners, and other open flames in the lab p. 54
  • 6.4 Cold (including cryogen safety) p. 55
  • 6.4.1 Common laboratory sources of low temperatures p. 56
  • 6.4.2 Safe procedures for maintenance of refrigerators and freezers p. 56
  • 6.4.3 Cryogenic temperatures p. 57
  • 6.5 Pressure and vacuum p. 63
  • 6.5.1 Compressed gases p. 63
  • 6.6 Electricity and magnetism p. 73
  • 6.6.1 Electricity p. 74
  • 6.6.2 Magnetism p. 78
  • 6.7 General environmental hazards p. 80
  • 6.7.1 Trips, slips, and-falls p. 80
  • 6.7.2 Lighting p. 81
  • 6.7.3 Noise p. 81
  • 6.7.4 Security hazards p. 81
  • 6.8 Case study: Chemistry experiment p. 82
  • 6.9 Exercises: Physical hazards p. 84
  • 7 Chemical hazards p. 86
  • 7.1 Routes of exposure to chemical hazards p. 86
  • 7.2 Chemical properties contributing to hazard p. 86
  • 7.2.1 Reactivity p. 86
  • 7.2.2 Volatility p. 87
  • 7.3 The chemical fume hood p. 87
  • 7.4 General hazard classifications and precautions p. 90
  • 7.4.1 Experimental protocols for chemical handling p. 90
  • 7.4.2 Flammables and oxidizers p. 91
  • 7.4.3 Corrosives p. 100
  • 7.4.4 Toxics p. 104
  • 7.4.5 Physical hazards from chemicals p. 110
  • 7.4.6 Reactive chemicals p. 110
  • 7.5 Communicating chemical hazards p. 113
  • 7.5.1 NFPA 704 "fire diamond" p. 113
  • 7.5.2 Transportation labeling p. 114
  • 7.5.3 The Globally Harmonized System p. 115
  • 7.5.4 The Safety Data Sheet p. 116
  • 7.6 Case studies p. 118
  • 7.6.1 Chemistry experiment p. 118
  • 7.6.2 Biology experiment p. 121
  • 7.7 Exercises: Chemical hazards p. 124
  • 8 Biological hazards p. 125
  • 8.1 Lab-acquired infections p. 125
  • 8.2 Assessment of biological infection risk p. 126
  • 8.2.1 Agent hazards p. 126
  • 8.2.2 Laboratory procedure hazards p. 128
  • 8.3 Biosafety levels p. 129
  • 8.3.1 Biosafety level 1 (BSL-1) p. 129
  • 8.3.2 Biosafety level 2 (BSL-2) p. 130
  • 8.3.3 Biosafety level 3 (BSL-3) p. 130
  • 8.3.4 Biosafety level 4 (BSL-4) p. 132
  • 8.4 Biological laboratory work practices p. 134
  • 8.4.1 General laboratory practices p. 134
  • 8.4.2 Personal protection p. 135
  • 8.4.3 Pipetting, syringing, and other sample-transfer methods p. 135
  • 8.4.4 Equipment use p. 136
  • 8.4.5 Storage, inventory, and labeling p. 136
  • 8.5 The biological safety cabinet p. 137
  • 8.5.1 A BSC is not a chemical fume hood p. 139
  • 8.5.2 The "laminar flow hood" or "clean air hood" is not a BSC p. 139
  • 8.5.3 Using a BSC p. 141
  • 8.6 Case studies p. 143
  • 8.6.1 Biology experiment p. 143
  • 8.6.2 Civil/environmental engineering experiment p. 145
  • 8.7 Exercises: biological hazards p. 146
  • 9 Raditation hazards p. 148
  • 9.1 Ionizing radiation p. 148
  • 9.1.1 Types of ionizing radiation p. 148
  • 9.1.2 Sources of hazard from ionizing radiation p. 148
  • 9.1.3 Control of ionizing radiation p. 151
  • 9.2 Non-ionizing radiation p. 153
  • 9.2.1 Ultraviolet radiation p. 153
  • 9.2.2 Infrared radiation p. 154
  • 9.2.3 Radiofrequency(RF) radiation p. 155
  • 9.2.4 Laser light sources p. 156
  • 9.3 Case studies p. 162
  • 9.3.1 Chemical engineering experiment p. 162
  • 9.3.2 Medical experiment p. 164
  • 9.3.3 Exercises: radiation hazards p. 166
  • Part III Hazard analysis techniques
  • 10 The checklist technique p. 171
  • 10.1 Strengths, weaknesses, and suitability p. 171
  • 10.2 Sources of checklists p. 171
  • 10.3 Example checklist: Quick laboratory inspection p. 172
  • 10.4 Evaluating recommendations from hazard analyses p. 175
  • 10.5 Exercises: laboratory inspection p. 175
  • 11 The Job Hazard Analysis technique (JHA) p. 176
  • 11.1 Strengths, weaknesses, and suitability p. 176
  • 11.2 Technique p. 176
  • 11.3 Example JHA p. 178
  • 11.4 Exercises: Job Hazard Analysis p. 178
  • 12 The What-If? Technique p. 180
  • 12.1 Strengths and weaknesses p. 180
  • 12.2 Suitability p. 180
  • 12.3 What-If? Technique p. 181
  • 12.3.1 Scoping p. 181
  • 12.3.2 Team assembly p. 183
  • 12.3.3 What-If? p. 183
  • 12.3.4 Causes p. 185
  • 12.3.5 Consequences p. 185
  • 12.3.6 Controls p. 186
  • 12.3.7 Current risk p. 186
  • 12.3.8 Recommendations p. 187
  • 12.3.9 Revised risk p. 188
  • 12.4 Example What-If? Study: Multi-axis press p. 188
  • 12.4.1 Nodes p. 191
  • 12.4.2 Team assembly p. 191
  • 12.4.3 What-if #1: What if a hydraulic actuator fails? p. 191
  • 12.4.4 What-if #2: What if a hydraulic line fails? p. 192
  • 12.4.5 What-if #3: What if the hydraulic pump develops a leak? p. 193
  • 12.5 Exercise: What-if? Technique p. 195
  • Part IV Practical applications of hazard control
  • 13 Controlling hazards in a laboratory procedures using JHA p. 199
  • 13.1 Reproducing a procedure from the literature p. 199
  • 13.2 Exercises: Using procedures taken from a research paper p. 201
  • 14 Evaluating risks in an experimental apparatus using What-if? Technique p. 202
  • 14.1 Case study: What-if? technique p. 202
  • 14.2 What-If? technique study on an experimental apparatus p. 206
  • 15 Designing an experiment form scratch p. 207
  • 15.1 Hazard controls are ex post facto solutions p. 207
  • 15.2 The only set factor in an experiment is the objective p. 207
  • 15.3 Inherently safer design principles p. 208
  • 15.3.1 The history of ISD p. 208
  • 15.3.2 ISD design principles p. 209
  • 15.4 Case studies in laboratory ISD p. 210
  • 15.4.1 Lab ISD case study: Impact testing of steel p. 210
  • 15.4.2 Lab ISD case study: The "Rainbow Experiment" p. 211
  • 15.5 Exercise: Inherently safer design of a hazardous experiment p. 212
  • Part V Appendices
  • 16 Laboratory safety checklists (abbreviated) p. 215
  • 17 Checklist reviews for common laboratory operation p. 223
  • 17.1 Delivering gas from a compressed gas cylinder p. 223
  • 17.2 Flame-seating a glass tube with an oxyacetylene torch p. 226
  • 17.3 Using a biological safety cabinet p. 228
  • 18 Writing experimental protocols and Standard operating procedures p. 230
  • 18.1 Types of "SOP" p. 230
  • 18.2 General advice on writing protocols p. 230
  • 18.3 Writing protocols for hazardous materials handling p. 232
  • 18.4 Writing protocols for experimental procedures p. 239
  • 18.5 Writing protocols for use of hazardous equipment p. 242
  • 19 Annotated bibliography of laboratory safety references p. 247
  • Reference p. 250
  • Index p. 257

Other details