Active knowledge modeling of enterprises

cover image

Where to find it

Information & Library Science Library

Call Number
HD30.213 .L55 2008
Status
Available

Summary

Enterprise Modeling has been defined as the art of externalizing enterprise knowledge, i.e., representing the core knowledge of the enterprise. Although useful in product design and systems development, for modeling and model-based approaches to have a more profound effect, a shift in modeling approaches and methodologies is necessary. Modeling should become as natural as drawing, sketching and scribbling, and should provide powerful services for capturing work-centric, work-supporting and generative knowledge, for preserving context and ensuring reuse. A solution is the application of Active Knowledge Modeling (AKM).

The AKM technology is about discovering, externalizing, expressing, representing, sharing, exploring, configuring, activating, growing and managing enterprise knowledge. An AKM solution is about exploiting the Web as a knowledge engineering medium, and developing knowledge-model-based families of platforms, model-configured workplaces and services.

This book was written by the inventors of AKM arising out of their cooperation with both scientists and industrial practitioners over a long period of time, and the authors give examples, directions, methods and services to enable new ways of working, exploiting the AKM approach to enable effective c-business, enterprise design and development, and lifecycle management. Industry managers and design engineers will become aware of the manifold possibilities of, and added values in, IT-supported distributed design processes, and researchers for collaborative design environments will find lots of stimulation and many examples for future developments.

Contents

  • 1 What is Active Knowledge Modeling Technology? p. 1
  • 1.1 Definition of Active Knowledge Modeling p. 4
  • 1.2 State-of-the-art Overview p. 7
  • 1.3 Discoveries and Core Concepts p. 9
  • 1.4 State-of-Practice - An Example p. 10
  • 1.5 The AKM Products p. 14
  • 1.6 Enterprise Knowledge Spaces p. 14
  • 1.7 Active Knowledge Architectures p. 16
  • 1.7.1 How to Represent Enterprise Knowledge p. 17
  • 1.7.2 Model-Generated Workplaces (MGWP) p. 19
  • 1.7.3 Model-Based Holistic Design p. 20
  • 1.7.4 Model-Based Systems Engineering p. 21
  • 1.8 The Core Modeling Languages p. 21
  • 1.9 Towards Enterprise Visual Scenes p. 22
  • 1.9.1 Visual Scenes and Collaboration Spaces p. 23
  • 1.9.2 The Powers of Visual Scenes p. 24
  • 1.10 Implications and Impacts p. 25
  • 2 Customer Challenges and Demands p. 27
  • 2.1 Background p. 27
  • 2.1.1 Structure of Chapter p. 27
  • 2.1.2 The Evolution of Challenges and Demands p. 30
  • 2.2 Society and Community Cooperation p. 30
  • 2.2.1 Developing Digital Libraries p. 31
  • 2.2.2 Enterprise-Enhanced Learning p. 33
  • 2.2.3 Developing Operational Enterprise Architectures p. 34
  • 2.3 Collaborative Business Networking p. 40
  • 2.3.1 Business Models p. 41
  • 2.3.2 Reference Models p. 43
  • 2.4 Interoperable Enterprise Collaboration p. 47
  • 2.4.1 Virtual Enterprises: Collaboration Spaces p. 47
  • 2.4.2 Process Structures: Emergence and Evolution p. 48
  • 2.4.3 Knowledge, Communication and Learning p. 49
  • 2.4.4 Intelligent Infrastructures: Integration and Customization p. 50
  • 2.4.5 Enterprise Interoperability p. 51
  • 2.4.6 System Engineering Approaches p. 51
  • 2.4.7 Embedded Systems Engineering p. 52
  • 2.5 Innovation and Holistic Design p. 55
  • 2.5.1 Industrial Customer Delivery p. 56
  • 2.5.2 Industrial Innovation p. 57
  • 2.5.3 Service-team Organization p. 59
  • 2.5.4 Concurrent Platform Engineering p. 59
  • 2.6 Knowledge and Data Representation p. 60
  • 2.7 Personal Workplaces and Interaction p. 61
  • 2.7.1 Innovation and Knowledge Repositories p. 62
  • 2.8 Summary p. 63
  • 3 Industrial Evolutions p. 65
  • 3.1 History of AKM Development p. 65
  • 3.2 Experiences from EXTERNAL p. 67
  • 3.2.1 The ICT Layer p. 67
  • 3.2.2 The Knowledge Representation Layer p. 69
  • 3.2.3 The Work Performance and Management Layer p. 70
  • 3.2.4 Case 1: The EXTERNAL Project p. 72
  • 3.2.5 Case 2: The Business Consulting Project Cycle p. 78
  • 3.2.6 Case 3: IT Consulting in an SME Network p. 80
  • 3.2.7 Final Evaluation Results p. 82
  • 3.3 Experiences from ATHENA p. 82
  • 3.3.1 Telecom Pilot p. 83
  • 3.3.2 Conclusions p. 89
  • 3.4 Summary p. 90
  • 4 State of the Art of Enterprise Modeling p. 91
  • 4.1 Industrial Diversity of Meaning and Usage p. 91
  • 4.2 International EM Markets p. 93
  • 4.2.1 The Enterprise Architecture Market p. 93
  • 4.2.2 The Business Process Management Market p. 94
  • 4.3 Application Domains p. 94
  • 4.3.1 Enterprise Engineering and Reengineering Activities p. 95
  • 4.3.2 Product Life Cycle Management p. 99
  • 4.3.3 Choice and Implementation of IT Systems and Solution p. 100
  • 4.3.4 General Enterprise Architecture and Operations Support p. 101
  • 4.4 Enterprise Modeling Frameworks and Architectures p. 101
  • 4.4.1 The Zachman Framework for Enterprise Architecture p. 102
  • 4.4.2 GERAM p. 104
  • 4.4.3 GRAI Framework p. 109
  • 4.4.4 ARIS (Architecture of Integrated Information Systems) p. 112
  • 4.4.5 CIMOSA p. 115
  • 4.4.6 The DoDAF Architecture Methodology p. 117
  • 4.4.7 TOGAF Architecture Methodology p. 118
  • 4.4.8 The TEAF Methodology from US Department of Commerce p. 119
  • 4.4.9 ISO 15745: Framework for Application Integration p. 120
  • 4.4.10 MISSION p. 122
  • 4.5 Conclusions on Enterprise Architecture Frameworks p. 125
  • 5 Enterprise Knowledge Architecture (EKA) p. 129
  • 5.1 Knowledge Architectures p. 129
  • 5.2 Principles for Active Knowledge Modeling (AKM) p. 131
  • 5.3 EKA (Enterprise Knowledge Architecture) p. 133
  • 5.3.1 Aspects and Multiple Dimensions p. 135
  • 5.3.2 Reflection and Metamodeling p. 136
  • 5.3.3 Inheritance p. 136
  • 5.3.4 Expressiveness p. 136
  • 5.3.5 Simplicity p. 137
  • 5.3.6 Degrees of Ambiguity, Formality and Uncertainty p. 137
  • 5.3.7 Complex Relationships, Roles and Boundary Management p. 138
  • 5.3.8 Identification Schemes and Resolution p. 139
  • 5.3.9 Model Management p. 140
  • 5.3.10 Versioning, Variants and Configurations p. 140
  • 5.4 AKM Execution: Interactive Behavior p. 141
  • 5.4.1 Interactive Execution and Evolution p. 141
  • 5.4.2 Basic Modeling Services p. 142
  • 5.4.3 Task Definition and Execution p. 144
  • 5.4.4 The Execution Context of a Task p. 147
  • 5.5 Summary p. 150
  • 6 Approaches to Enterprise Solutions p. 153
  • 6.1 Product-Oriented Business Interoperability Profiles p. 154
  • 6.1.1 Product Document Exchange and Management p. 155
  • 6.1.2 Product Data Exchange through Mapping p. 155
  • 6.1.3 Product Data Exchange Based on Reference Models and Semantic Mediation p. 156
  • 6.1.4 Shared Product Information Repository p. 157
  • 6.1.5 Federated Product Knowledge Repository p. 158
  • 6.2 State of the Art and Requirements for Enterprise Solutions p. 159
  • 6.2.1 Product Design and Life Cycle Management p. 159
  • 6.2.2 Life Cycle Knowledge Integration p. 160
  • 6.2.3 State of the Art in Product Design p. 161
  • 6.3 Product-Based Interoperability Approaches p. 164
  • 6.3.1 XML p. 166
  • 6.3.2 Web Services p. 167
  • 6.3.3 BPMI p. 168
  • 6.3.4 WfMC p. 168
  • 6.3.5 OAGIS GIS p. 171
  • 6.3.6 OASIS BPEL p. 172
  • 6.3.7 UN/CEFACT BCF p. 172
  • 6.3.8 RosettaNet p. 173
  • 6.3.9 OMG p. 175
  • 6.3.10 ISO/IEC 15414: Open Distributed Processing -Reference Model - Enterprise Language p. 177
  • 6.3.11 W3C p. 178
  • 6.3.12 Base Ontology Technologies p. 180
  • 6.3.13 Semantic Web Services: OWL-S and WSMO p. 186
  • 6.3.14 WEB 2.0 p. 189
  • 6.4 Summary p. 190
  • 7 Introducing Active Knowledge Modeling in Industry p. 193
  • 7.1 Major Industrial Computing Challenges Revisited p. 193
  • 7.2 The Customer Delivery Process p. 194
  • 7.2.1 Description of Methodology Steps p. 195
  • 7.3 Each C3S3P Step p. 196
  • 7.3.1 Concept Testing p. 197
  • 7.3.2 Scaffolding p. 198
  • 7.3.3 Scenarios Modeling p. 200
  • 7.3.4 Solutions Modeling p. 203
  • 7.3.5 Platform Configuration p. 209
  • 7.3.6 Platform Delivery and Practicing p. 210
  • 7.3.7 Performance Improvement and Operations p. 211
  • 7.4 Service Teams p. 212
  • 7.5 Integrated Product and Services Platforms p. 213
  • 7.6 AKM Approach to Customer Projects p. 214
  • 7.6.1 IRTV in Action p. 217
  • 7.6.2 Current Context p. 222
  • 7.6.3 The IRTV Methodology p. 223
  • 7.7 Summary p. 225
  • 8 Families of Platforms and Architectures p. 227
  • 8.1 The MAPPER Architecture p. 229
  • 8.2 Component Descriptions p. 231
  • 8.2.1 Metis Enterprise Portal and Repository p. 231
  • 8.2.2 Workflow Engine - TRMS Client p. 235
  • 8.2.3 CURE p. 238
  • 8.2.4 Concert Chat p. 241
  • 8.3 Task Patterns p. 243
  • 8.3.1 Modeling Task Patterns p. 244
  • 8.4 Task Management p. 250
  • 8.4.1 Creating and Starting a Task Pattern p. 250
  • 8.4.2 Task User Interfaces p. 251
  • 8.4.3 Allocating Persons to Roles p. 253
  • 8.4.4 Task Execution Rules p. 256
  • 8.5 Summary p. 257
  • 9 Enterprise Design and Development p. 259
  • 9.1 The CPPD Project Context p. 261
  • 9.1.1 Integrating Life-Cycles p. 261
  • 9.1.2 Nature of Work-Generative Knowledge p. 262
  • 9.1.3 The Active Knowledge Architecture p. 263
  • 9.2 Addressing Industrial Demands p. 265
  • 9.2.1 Industrial Use of the CPPD Methodology p. 265
  • 9.2.2 Customer and CPPD Requirements p. 266
  • 9.2.3 Support for Early Design p. 267
  • 9.2.4 CPPD Roles and Responsibilities p. 268
  • 9.3 The AKM Approach to Product Design p. 269
  • 9.3.1 CPPD Development p. 270
  • 9.3.2 The Voice of the Customers p. 272
  • 9.3.3 The Voice of Business p. 272
  • 9.3.4 The Voice of Technology p. 273
  • 9.3.5 Component Development p. 275
  • 9.3.6 The CPPD Architecture p. 275
  • 9.4 The CPPD Components p. 276
  • 9.4.1 Configurable Product Components (CPC) p. 279
  • 9.4.2 Configurable Visual Workplaces (CVW) p. 280
  • 9.4.3 Configurable Work Processes (CWP) p. 281
  • 9.4.4 Configurable Properties and Parameter Sets (CPP) p. 282
  • 9.4.5 Configurable Product Structure (CPS) p. 284
  • 9.4.6 Configurable Function Deployment (CFD) p. 285
  • 9.4.7 Configurable Design Language (CDL) p. 285
  • 9.4.8 Configurable Idea Bank (CIB) p. 286
  • 9.5 Example of CVW p. 286
  • 9.5.1 Current Workplaces p. 288
  • 9.6 Summary p. 299
  • 10 Realizing the Knowledge Economy p. 301
  • 10.1 Background p. 302
  • 10.2 Networked Business Theories p. 304
  • 10.2.1 Value Chain Analysis p. 305
  • 10.2.2 Schumpeterian Innovation p. 307
  • 10.2.3 Network Economics p. 308
  • 10.2.4 Transaction Cost Economics p. 313
  • 10.3 Realization Approaches p. 314
  • 10.4 EU Research p. 316
  • 10.4.1 Business Requirements p. 317
  • 10.4.2 Assessment ofNetworked Organizations and Value Models p. 317
  • 10.5 AKM Contributions p. 318
  • 10.5.1 Industrial Communities p. 319
  • 10.5.2 From Paper to Models and Knowledge Architectures p. 320
  • 10.5.3 From Process Flows to Workspaces p. 320
  • 10.5.4 One Integrated Product Model p. 321
  • 10.5.5 Collaborative Holistic Design p. 322
  • 10.5.6 Data and Knowledge Management p. 323
  • 10.5.7 Project Design p. 324
  • 10.5.8 Changes in Management p. 325
  • 10.6 Building Industrial Platforms p. 325
  • 10.7 Impacts and Consequences p. 327
  • 10.7.1 Industrial Communities p. 328
  • 10.7.2 Business Economics p. 328
  • 10.7.3 Industrial Research p. 329
  • 10.7.4 Scientific Research p. 329
  • 10.7.5 Education and Training p. 329
  • 10.7.6 Future Directions p. 330
  • 10.8 Outlook p. 331
  • 11 Towards Enterprise Visual Scenes p. 333
  • 11.1 Main Principles for Enterprise Visual Scenes p. 333
  • 11.1.1 The Powers of Visual Scenes p. 334
  • 11.2 Three-Dimensional Model Applications in Industry p. 335
  • 11.2.1 Early Virtual Reality Experiments p. 336
  • 11.2.2 BIM Models p. 336
  • 11.2.3 NASA Concurrent Design p. 342
  • 11.2.4 Maritime Applications p. 343
  • 11.3 Nonindustrial Applications p. 344
  • 11.3.1 Virtual Environments p. 344
  • 11.4 Real Virtuality and Augmented Reality p. 348
  • 11.4.1 Metal and Plastic Printing p. 350
  • 11.4.2 Augmented Reality p. 350
  • 11.5 New Modeling and Visualization Techniques p. 353
  • 11.5.1 Three-Dimensional Modeling p. 353
  • 11.5.2 Annotated Maps p. 354
  • 11.6 Future Solutions p. 356
  • 11.6.1 Croquet: An Example Environment p. 357
  • 11.7 Summary p. 358
  • 12 Scientific Foundations of AKM Technology p. 359
  • 12.1 Epistemology p. 359
  • 12.2 Human Learning, Pedagogy and Psychology p. 363
  • 12.3 Natural Language, Linguistics and Semiotics p. 371
  • 12.4 Process Design and Engineering p. 376
  • 12.4.1 Transformational PMLs p. 377
  • 12.4.2 Conversational Process Modeling p. 377
  • 12.4.3 Declarative and Constraint-Based Process Modeling p. 378
  • 12.4.4 Roles and Their Interaction p. 378
  • 12.4.5 System Dynamics p. 379
  • 12.4.6 Object-Oriented Process Modeling p. 380
  • 12.4.7 Other Explicit Process Representations p. 380
  • 12.5 Organizational Development and Learning p. 380
  • 12.6 Product Design and Engineering p. 383
  • 12.7 Systems Engineering p. 384
  • 12.8 Summary p. 386
  • 13 Enterprise Knowledge Spaces p. 387
  • 13.1 Enterprise Knowledge Spaces Revisited p. 387
  • 13.2 Modeling of Enterprise Knowledge Spaces p. 388
  • 13.2.1 Personal Workspace p. 388
  • 13.2.2 Innovation Space p. 390
  • 13.2.3 Business Networking Space p. 391
  • 13.2.4 Community Space p. 391
  • 13.2.5 Overview p. 392
  • 13.2.6 Knowledge Architectures p. 393
  • 13.2.7 Reflection Across Knowledge Spaces p. 395
  • 13.3 Summary p. 397
  • 14 Summary and Directions p. 399
  • 14.1 Core Principles and Solutions p. 400
  • 14.2 Addressing the Main Challenges p. 405
  • 14.3 Industrial Exploitation p. 407
  • 14.4 The Way Ahead p. 409
  • References p. 411
  • Terminology and Abbreviations p. 425
  • Index p. 433

Other details